Puissances

Définition « Puissance entière »

Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$: $a^n \stackrel{\text{def}}{=} \underbrace{a \cdot a \cdot a \cdot ... \cdot a}_{n \text{ fois}}$

Soit $a \in \mathbb{R}^*$: $a^0 \stackrel{\text{def}}{=} 1$

Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}_{-}$: $a^{n} \stackrel{\text{def}}{=} \frac{1}{a^{-n}}$

Attention: 0° n'existe pas

Définition « Puissance rationnelle »

Soient $a \in \mathbb{R}_+$ et $n \in \mathbb{N}^*$: $a^{\frac{1}{n}} = \sqrt[n]{a}$

Soient $a \in \mathbb{R}_+$, $m \in \mathbb{Z}$ et $n \in \mathbb{N}^*$: $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

Théorème « Propriétés des puissances »

Soient $a, b \in \mathbb{R}$ et $m, n \in \mathbb{Q}$: (à l'exclusion des cas 0°):

$$a^{n} \cdot a^{m} \stackrel{\text{thm}}{=} a^{n+m} \qquad (a^{n})^{m} \stackrel{\text{thm}}{=} a^{n \cdot m} \qquad \frac{a^{n}}{a^{m}} \stackrel{\text{thm}}{=} a^{n-m} (\text{pour } a \neq 0)$$

$$a^{n} \cdot b^{n} \stackrel{\text{thm}}{=} (ab)^{n} \qquad \frac{a^{n}}{b^{n}} \stackrel{\text{thm}}{=} \left(\frac{a}{b}\right)^{n} (\text{pour } b \neq 0)$$

Mais attention : $a^n + b^n \neq (a+b)^n$

Remarque : ces propriétés restent vraies pour *n* irrationnel !:

Racines

Définition « Racine carrée »

Soient $a \in \mathbb{R}_+$: $\sqrt{a} = b \stackrel{\text{déf}}{\Leftrightarrow} b^2 = a$ et $b \ge 0$

Définition « Racine n-ième »

Si n est pair, la racine n-ième de a, notée $\sqrt[n]{a}$ est, <u>si il existe</u>, le nombre réel <u>positif</u> b tel que la puissance n-ième de b donne a.

Si n est impair, la racine n-ième de a, notée $\sqrt[n]{a}$ est le nombre réel b tel que la puissance n-ième de b donne a..

Théorèmes « Propriétés des racines »

Soient $a, b \in \mathbb{R}_+$: $\sqrt[n]{a} \sqrt[n]{b} \stackrel{\text{thm } n}{=} \sqrt[n]{a \cdot b}$

$$\frac{a}{\sqrt[n]{b}} \stackrel{\text{thm}}{=} \sqrt[n]{a \cdot b} \qquad \qquad \sqrt[n]{a} \stackrel{\text{thm}}{=} \left(\sqrt[n]{a}\right)^n \stackrel{\text{thm}}{=} a$$

$$\sqrt[n]{a} \stackrel{\text{thm}}{=} \sqrt[n]{a}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \stackrel{\text{thm}}{=} \sqrt[n]{a}$$

$$\sqrt[n]{a} \stackrel{\text{thm}}{=} \sqrt[n]{a}$$

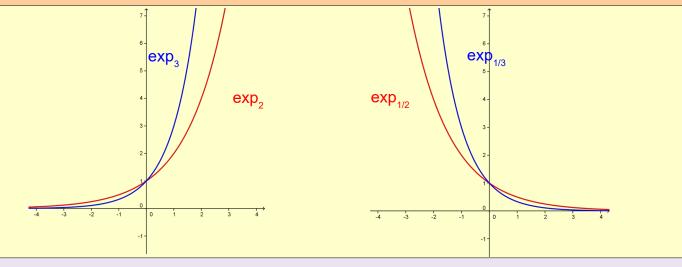
Mais attention : $\sqrt[n]{a+b} \neq \sqrt[n]{a} + \sqrt[n]{b}$

Ma2 Ch5: Exponentielles

Exponentielles

Définition «Fonction exponentielle de base a »

Soit
$$a \in \mathbb{R}_+^* \setminus \{1\}$$
: $\exp_a : \mathbb{R} \to \mathbb{R}_+^*$
 $x \to \exp_a(x) = a^x$



Ces fonctions permettent de modéliser des phénomènes à très forte croissance (a > 1); elles sont **bijectives** de \mathbb{R} dans \mathbb{R}_+^*

Equations exponentielles simples - exemple

49^{3x}=7^{x+1}
$$\Leftrightarrow$$
 $(7^2)^{3x}$ =7^{x+1} \Leftrightarrow $7^{2\cdot 3x}$ =7^{x+1} \Leftrightarrow 7^{6x} =7^{x+1} $\stackrel{\text{car les fct}}{\Leftrightarrow}$ $6x$ =x+1 \Leftrightarrow 5x=1 \Leftrightarrow x= $\frac{1}{5}$

Théorème « Loi de croissance continue »

Si q_0 est la valeur d'une quantité q au temps t=0 (c'est-à-dire que q_0 est la valeur initiale de q), et si q change à chaque instant selon un taux proportionnel à sa valeur actuelle, alors, après un temps t, on aura une quantité : $q(t) = q_0 e^{T \cdot t}$ $e \simeq 2.71$ est appelée constante d'Euler.

Si T > 0, on parle de taux de croissance de q.

Si T > 0, on parle de taux de décroissance de q.

Exemple: en 1982, la population des Etats-Unis était d'environ 227 millions d'habitants. La population a continué de croître de manière régulière au taux de 0.7% par an. Calculer le nombre d'habitants en 2021 si ce taux de croissance est resté constant.

On a :
$$q_0 = 227000000$$
, $T = 0.007$, $t = 39$, d'où

$$q(30)=227'000'000 \cdot e^{0.007 \cdot 39} \simeq 288'255'356$$
 habitants