ations chiffrées après correction du ons (une coche par faute) : :/ is (une coche par faute) [bonus] :
is (une coche par faute) [bonus] ·
(and coone pur raute) [bonas].
:/
es points des exercices :/
es points de l'épreuve :

Informations relatives au corrigé du travail par l'élève

• sur des feuilles A4 au format paysage, sur 3 colonnes et pour chaque erreur, l'élève:

recopie l'erreur		dans la colonne 3: corrige l'erreur
------------------	--	--

- le maître corrigé et lui attribue une note indicative qui n'entre pas en compte dans le calcul de la moyenne; par contre:
 - o si la note du corrigé est 5.5 ou 6 : la note du travail est augmentée de 0.5
 - o si la note du corrigé est 4.5 ou 5 : la note du travail n'est pas modifiée et un crédit de 0.25 est à valoir pour le prochain processus d'évaluation de type «épreuve 90' »
 - si la note du corrigé est inférieure ou égale à 4 : la note du travail n'est pas modifiée
- informations complémentaires sur http://math.bibop.ch/generalites/evaluation/corriges-depreuves

Début du travail

Exercice 1 (environ 5 points)

On considère les points A,B,C et D ci-dessous :

. C

. A

. *B*

D

A partir de cette première figure, on définit un nouveau triangle EFG grâce aux relations $\overrightarrow{AE} = -\overrightarrow{AB}$, $\overrightarrow{BF} = -\overrightarrow{BC}$, $\overrightarrow{CG} = -\overrightarrow{CA}$.

- (a) Représenter *E,F* et *G* directement sur l'énoncé.
- (b) Exprimer algébriquement les vecteurs \overrightarrow{AG} , \overrightarrow{BC} et \overrightarrow{FG} comme combinaison linéaire des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- (c) Déterminer graphiquement approximativement en utilisant le schéma de l'énoncé λ et μ tels que $\overline{AD} = \lambda \overline{AB} + \mu \overline{AC}$.

Exercice 2 (environ 8 points)

On considère les points A(-4;6), B(3;-5) et C(3;4).

- (a) Déterminer une équation vectorielle de la droite d passant par A et B, en déduire un système d'équations paramétriques de d puis une équation cartésienne de d
- (b) Déterminer une équation cartésienne de la droite *d'* perpendiculaire à *d* passant par *B*.
- (c) Calculer l'angle entre \overrightarrow{AB} et \overrightarrow{AC} .

Exercice 3 (environ 4 points)

Soient A(1;2;0), B(-3;2;4), C(0;0;5) et D(x;y;z) quatre points de \mathbb{R}^3 .

- (a) Les points A, B et C sont-ils alignés?
- (b) Déterminer x;y;z pour que ABCD soit un parallélogramme.
- (c) ABCD est-il un losange? Justifier.

Exercice 4 (environ 6 points)

Soit
$$\vec{u} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$

- (a) Déterminer un vecteur orthogonal à \vec{u} et \vec{v} .
- (b) Calculer l'aire du parallélogramme défini par les vecteurs \vec{u} et \vec{v} .
- (c) Déterminer un vecteur de norme 1 perpendiculaire à \vec{u} et \vec{v} .

On considère le plan Π passant par l'origine et de vecteurs directeurs \vec{u} et \vec{v} .

- (d) Déterminer une équation cartésienne de Π .
- (e) Calculer la distance entre Π et A(-1;0;1)

Exercice 5 (environ 7 points)

Soit le point A(1;2;3) et le plan $\Pi_1: x-2y+z=2$.

- (a) Déterminer une équation vectorielle puis des équations cartésiennes de la droite droite d passant par le point A et orthogonale au plan Π_1 .
- (b) Déterminer une équation cartésienne d'un plan $\ \Pi_2$ parallèle à $\ \Pi_1$.
- (c) Déterminer une équation cartésienne d'un plan Π_3 parallèle à Π_1 et passant par B(0;0;3).
- (d) Déterminer les coordonnées du point d'intersection I de d avec Π_3 .