Collège de Saussure

Examen semestriel de mathématiques de 1re année, niveau normal

Date	20 décembre 2016		
Durée	120 minutes		
Maîtres, cours et nombre d'élèves	Jean-Marie Delley 1Ma1.DF03 (23 élèves)		
Nombre de pages	10		
Impression	recto-verso, noir-blanc		
Nombre d'exercices	7		
Documents et matériel autorisés	personnels :		
Consignes	 répondre sur l'énoncé; vous pouvez joindre si nécessaire les feuilles quadrillées fournies en y ajoutant votre nom; la présentation doit être soignée, l'écriture lisible; toutes les réponses doivent être justifiées par un raisonnement ou un calcul; tous les calculs doivent figurer sur les feuilles d'énoncé. 		

Nom :	Prénom :		
Groupe:	Cours :		
Points obtenus	Note:		

Répartition des points

Exercice 1:9 points

Exercice 2:5 points

Exercice 3: 13 points

Exercice 4: 14 points

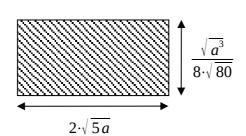
Exercice 5: 7 points

Exercice 6: 7 points

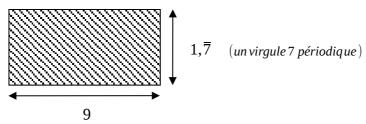
Exercice 7: 13 points

Notations: 2 points

Total: 70 points


Exercice 1 (environ 9 points)

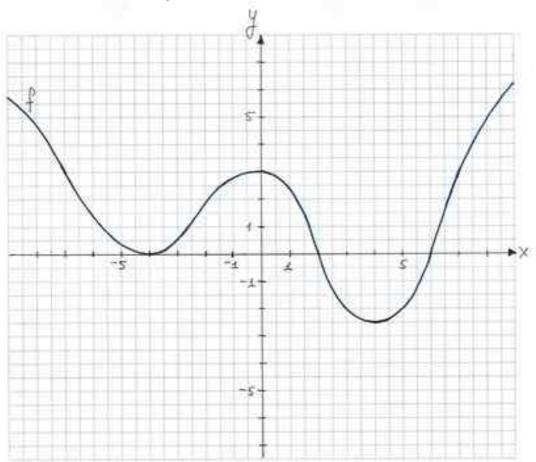
Calculer en valeur exacte et sous forme réduite l'aire de chacun des rectangles suivants :


(a)

(b)

(c) Ici, on demande d'effectuer toutes les transformations nécessaires sans utiliser la calculatrice.

Exercice 2 (6 points)

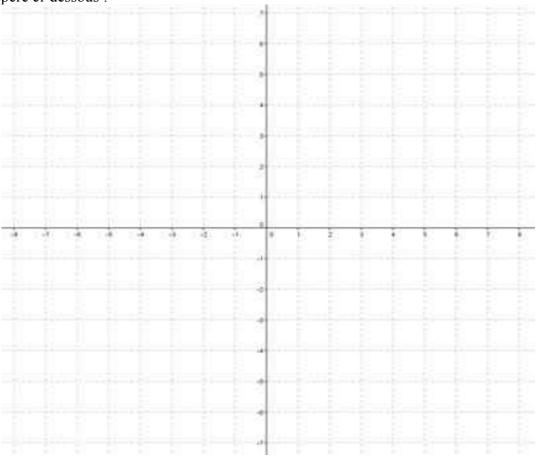

Vrai ou faux ? Justifier.

(a) $0, \overline{12} \cdot \sqrt{8} \cdot \frac{\sqrt{2}}{3}$ est rationnel.

(b) Si a, b > 0, alors $\sqrt{a} + \sqrt{b} = \sqrt{a+b}$

Exercice 3 (13 points)

Soit la fonction réelle *f* donnée par sa représentation graphique. On suppose qu'il n'y a pas d'autres zéros que ceux visibles sur cette représentation.



Déterminer:

- (a) l'ensemble des zéros de f
- (b) l'ordonnée à l'origine de f
- (c) f(1)
- (d) l'image de -3
- (e) l'ensemble des préimages de 3
- (f) $f^{-1}(1)$
- (g) le tableau des signes de f
- (h) l'ensemble des x pour lesquels $f(x) \ge 0$

Exercice 4 (14 points)

Sur le repère ci-dessous :

- (a) Représenter graphiquement la droite d d'équation y = -2x + 3.
- (b) Représenter graphiquement la droite d_1 parallèle à d qui contient le point C(-2; 3), puis déterminer son équation (il ne suffit pas de « lire » les données sur le graphe).

(c) Représenter graphiquement la droite d_2 , perpendiculaire à d qui contient C, puis déterminer son équation (il ne suffit pas de « lire » les données sur le graphe).

(d) Déterminer algébriquement le point d'intersection I des droites d et d_2 .

(e) Calculer l'ordonnée à l'origine d'une droite d_3 de pente $m = -\frac{1}{2}$ telle que l'intersection de d et d_3 appartienne à l'axe 0x.

Exercice 5 (7 points)

- (a) Compléter par un symbole adéquat, et donner une justification :
 - i. 1,27 Q

ii. \mathbb{Z} ... $\mathbb{Q} = \mathbb{Z}$

(b) Représenter les intervalles A=]-1 ; 3] et B= [3 ; 5 [sur une droite réelle, puis déterminer $A \cap B$, $A \cup B$ et $A \setminus B$.

Exercice	6	(7	points)
----------	---	----	---------

(a) Peut-on trouver trois entiers impairs consécutifs dont la somme vaut 66 ? Justifier.

(b) Peut-on trouver cinq nombres impairs consécutifs dont la somme est égale à 405 ? Justifier.

Exercice 7 (13 points)

Partie 1 : On considère la conjecture suivante :

Conjecture 1 : Un multiple de 10 est également multiple de 30.

- (a) Ecrire la conjecture 1 sous la forme d'une implication.
- (b) Cette conjecture 1 est-elle vraie ou fausse? Justifier.

- (c) Enoncer la réciproque de la conjecture 1.
- (d) Cette réciproque est-elle vraie ou fausse ? Justifier.

(e) Enoncer la contraposée de la conjecture 1.

Partie 2 : On considère la conjecture suivante :

Conjecture 2 : La différence des carrés de deux entiers quelconques consécutifs est impaire.

- (f) Parmi les choix ci-dessous, quelle est l'implication correspondant à la conjecture 2 (entourer la bonne réponse) ?
 - i. Si n et m sont consécutifs, alors n^2 et m^2 sont impairs.
 - ii. Si n m est impair, alors n^2 et m^2 sont consécutifs.
 - iii. Si n et m sont consécutifs, alors $m^2 n^2$ est impair.
 - iv. Si n et m sont consécutifs, alors $(m^2 n)^2$ est impair.
 - v. Si $(m^2 n)^2$ est impair, alors n et m sont consécutifs.
 - vi. Si x et y sont consécutifs, alors $\frac{m^2}{n^2}$ est impair.
- (g) Démontrer que la conjecture 2 est vraie.