Collège de Saussure Epreuve de mathématiques de 3e année, niveau avancé		
Maître	Jean-Marie Delley	
Date	14 mai 2024	
Durée	90 minutes	
Documents et matériel autorisés	 personnels : table numérique non annotée (signets et surlignage autorisés); calculatrice TI30, TI34 ou modèle équivalent (non graphique, non programmable). 	
Consignes	 la présentation doit être soignée, l'écriture lisible ; toutes les réponses doivent être justifiées par un raisonnement ou un calcul. 	

Nom:	Prénom :	Groupe:
------	----------	---------

Répartition des points

Exercice 2: 10 points

Total final: / 64 points

Exercice 3: 14 points

Total: / 62 points

Exercice 1 (environ 6 pts)

On considère O, A et B, trois points quelconques non-alignés et soit P le point milieu de AB. Montrer que $\overline{OP} = \frac{1}{2}(\overline{OA} + \overline{OB})$.

Exercice 2 (environ 10 pts)

Déterminer les coordonnées du point d'intersection de la droite d passant par A(1;-2;3) et B(2;0;1) et du plan Π de vecteurs directeurs $\vec{u} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -2 \\ 1 \\ 5 \end{pmatrix}$ et passant par l'origine.

Exercice 3 (environ 14 pts)

On considère deux droites d_1 et d_2 d'équations $d_1: \frac{x+1}{-2} = \frac{y-1}{3} = z+2$ et $d_2: \frac{x}{3} = \frac{-y+2}{4} = \frac{z+1}{-2}$.

- (a) Sont-elles gauches? Justifier.
- (b) Trouver une équation cartésienne d'un plan Π_1 parallèle à chacune des droites d_1 et d_2 .
- (c) Trouver une équation cartésienne d'un plan Π_2 parallèle à Π_1 .
- (d) Calculer la distance entre d_1 et d_2 .

Exercice 4 (environ 24 pts)

Dans l'espace, on considère les points A(0;4;-1), B(-2;4;-5), C(2;2;-5) et D(0;0;-1).

On donne les vecteurs
$$\overrightarrow{AB} \begin{pmatrix} -2 \\ 0 \\ -4 \end{pmatrix}$$
, $\overrightarrow{BC} \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}$, $\overrightarrow{CD} \begin{pmatrix} -2 \\ -2 \\ 4 \end{pmatrix}$.

- (a) Déterminer une équation cartésienne de chacun des plans médiateurs des segments [AB], [BC] et [CD].
- (b) Démontrer que ces trois plans ont un point commun I. Déterminer ses coordonnées.
- (c) En déduire le centre I de la sphère Σ qui contient A, B, C et D. Quel est son rayon ?
- (d) Déterminer une équation cartésienne de la sphère Σ .
- (e) Calculer le volume du tétraèdre ABCD. Effectuer les calculs à la main.

Exercice 5 (environ 8 pts)

On considère les conjectures suivantes. Sont-elles vraies ou fausses ? Justifier.

- (a) Si \vec{u} , \vec{v} et \vec{w} , sont trois vecteurs non nuls de l'espace, alors $[\vec{u}; \vec{v}; \vec{w}] = [\vec{w}; \vec{v}; \vec{u}]$.
- (b) Si on considère le plan $\Pi: ax+by+cz+d=0$ et la droite $d: \frac{x-a}{a} = \frac{y-b}{b} = \frac{z-c}{c}$, alors d est orthogonale à Π