Corrigés des exercices du chapitre 3

Optimisation

38

1. Soient x et y les deux nombres

2. La somme de cubes à optimiser : $x^3 + y^3$

3. On a: x+y=16 donc y=16-x

4. D'où la somme de cubes en fonction de x seul :

$$S(x) = x^3 + (16 - x)^3 = x^3 + 4096 - 768x + 48x^2 - x^3 = 48x^2 - 768x + 4096 = 16(3x^2 - 48x + 256)$$

5. $S'(x)=16(6x-48)=16\cdot 6\cdot (x-8)=96(x-8)$

7. $Z_{S'(x)} = \{ 8 \}$

8. Tableau de signes :

\boldsymbol{x}		8	
x-8	_	0	+
f'(x)	_	0	+
f(x)		min	*

Remarque : comme les deux nombres sont positifs, on a : $D_{vin} = [0,16]$

a.

9. La fonction S(x) admet un minimum en x=8 d'où y=16-8=8 .

10. Le minimum de la somme des cubes est atteint pour les deux nombres 8 et 8 (il vaut $8^3+8^3=1024$).

b.

9. Le maximum de la somme des cubes n'apparaît pas dans le tableau, mais comme $D_{vip}=[0,16]$, le maximum est atteint sur le « bord» : soit pour x=0 soit pour x=16 .

Il faut calculer les images :

$$x=0 \Rightarrow y=16-0=16: x^3+y^3=0^3+16^3$$

 $x=16 \Rightarrow y=16-16=0: x^3+y^3=16^3+0^3$ solutions symétriques

10. Le maximum de la somme des cubes est atteint pour les nombres 0 et 16 (il vaut $0^3+16^3=16^3=4096$).

39

1. Soient x et y les deux nombres

a.

2. Le produit à optimiser : $x \cdot y$

Corrigés des exercices du chapitre 3

3. Réduire à une variable : x+y=20 donc y=20-x

4. D'où le produit ces deux nombres en fonction de x seul : $f(x)=x(20-x)=20x-x^2$

5. f'(x)=20-2x=2(10-x).

7. Zéros de f'(x) : $f'(x)=0 \Leftrightarrow 10-x=0 \Leftrightarrow x=10$. Alors $Z_f'(x)=\{10\}$

8. Tableau de signes :

\boldsymbol{x}		10	
10-x	+	0	_
f'(x)	+	0	_
f(x)	*	max	

9. La fonction f(x) admet un maximum en x=10 d'où y=20-x=20-10=1010. Le produit est maximal pour les nombres 10 et 10 (il vaut $10\cdot10=100$)

b.

2. La somme des carres à optimiser : $x^2 + y^2$

3. Réduire à une variable : x+y=20 donc y=20-x

4. D'où la somme des carres en fonction de x seul : $f(x)=x^2+(20-x)^2$

5. f'(x)=2x+2(20-x)(-1)=2x-40+2x=4x-40=4(x-10).

7. Zéros de f'(x) : $f'(x)=0 \Leftrightarrow x-10=0 \Leftrightarrow x=10$. Alors $Z_f'(x)=\{10\}$

8. Tableau de signes :

\boldsymbol{x}		10	
<i>x-10</i>	_	0	+
f'(x)	_	0	+
f(x)		min	*

9. La fonction f(x) admet un minimum en x=10 d'où y=20-x=20-10=10

10. La somme des carrés est minimale pour les nombres 10 et 10 (elle vaut $10^2+10^2=200$).

c.

2. À optimiser : $x^2 \cdot v^3$

3. Réduire à une variable : x+y=20 donc y=20-x

4. D'où $x^2 \cdot y^3$ en fonction de x seul : $f(x) = x^2 \cdot (20 - x)^3$

5. $f'(x)=2x(20-x)^3+3x^2(20-x)^2(-1)=x(20-x)^2[2(20-x)-3x]=5x(8-x)(20-x)^2$

7. $Z_f'(x) = \{0; 8; 20\}$

Corrigés des exercices du chapitre 3

8. Tableau de signes :

\boldsymbol{x}		0		8		20	
\overline{x}	_	0	+	+	+	+	+
8-x	+	+	+	0	_	_	_
$(20-x)^2$	+	+	+	+	+	0	+
f'(x)	_	0	+	0	_	0	_
f(x)		min	X	max	_	Pt. infl	

9. La fonction f(x) admet un maximum en x=8 d'où y=20-x=20-8=12 10. Les deux nombres sont 8 et 12 (Le maximum du produit du carré du premier par le cube du second vaut $8^2 \cdot 12^3 = 110592$).

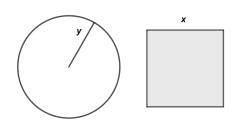
40

- 1. Soient x la longueur d'un côté,
 - y la longueur d'autre côté
- 2. L'aire du champ à optimiser: xy
- 3. Réduire à une variable : 2x+y=4000 donc y=4000-2x
- 4. D'où l'aire en fonction de x seul : $A(x)=x(4000-2x)=4000x-2x^2$
- 5. A'(x) = 4000 4x = 4(1000 x)
- 7. $Z_{A'(x)} = \{1000\}$
- 8. Tableau de signes :

$\boldsymbol{\mathcal{X}}$		1000	
1000-x	+	0	_
A'(x)	+	0	_
A(x)	*	max	

- 9. La fonction A(x) admet un maximum en x=1000 d'où y=4000-2 x=2000
- 10. Les dimensions du champ d'aire maximale sont 1000 m et 2000 m.

41



- 1. Soient x le côté du carré et
 - y le radius du cercle
- 2. L'aire totale à optimiser : $\pi y^2 + x^2$
- 3. La longueur de la courbe totale est :

$$2\pi y + 4x = 200$$
 donc $x = \frac{100 - \pi y}{2}$

4. D'où l'aire en fonction de
$$y$$
 seul : $A(y) = \pi y^2 + \left(\frac{100 - \pi y}{2}\right)^2$

5.
$$A'(y) = 2\pi y + 2 \cdot \frac{100 - \pi y}{2} \cdot (-\frac{\pi}{2}) = 2\pi y - \frac{\pi}{2} (100 - \pi y) = \frac{\pi}{2} (4y + \pi y - 100) = \frac{\pi}{2} [y(4 + \pi) - 100]$$

7.
$$A'(y)=0 \Leftrightarrow \frac{\pi}{2}[y(4+\pi)-100] \Leftrightarrow y(4+\pi)-100=0 \Leftrightarrow y=\frac{100}{4+\pi}$$
. D'où $Z_{A'(y)}=\{\frac{100}{4+\pi}\}$

8. Tableau des signes :

y		$\frac{100}{4+\pi}$	
$y(4+\pi)-100$	_	0	+
A'(y)	_	0	+
A(y)		min	*

a.

9. La fonction A(y) admet un minimum en $y = \frac{100}{4 + \pi}$

d'où
$$x = \frac{100 - \pi y}{2} = \frac{100 - \pi \cdot \frac{100}{4 + \pi}}{2} = \frac{400 + 100 \pi - 100 \pi}{2(4 + \pi)} = \frac{200}{4 + \pi}$$

10. On a alors le partage : $2\pi \cdot \frac{100}{4+\pi} \simeq 88\,m$ pour le cercle et $4\cdot \frac{200}{4+\pi} \simeq 112\,m$ pour le carré. La valeur de l'aire totale pour ce partage vaut $\pi \left(\frac{100}{4+\pi}\right)^2 + \left(\frac{200}{4+\pi}\right)^2 \simeq 1400\,m^2$.

b.

9. La fonction A(y) admet un maximum sur le bord .

Domaine restreint pour y est $0 \le 2\pi y \le 200 \Leftrightarrow 0 \le y \le \frac{100}{\pi}$. Il faut comparer les bordes :

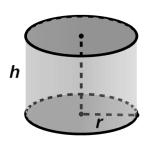
soit
$$y=0$$
 , donc $A(0)=\pi\cdot 0^2+\left(\frac{100-\pi\cdot 0}{2}\right)^2=50^2=2500$ - seul un carré ;

$$\text{soit} \quad y = \frac{100}{\pi} \quad \text{,} \quad \text{donc} \qquad A\left(\frac{100}{\pi}\right) = \pi \cdot \left(\frac{100}{\pi}\right)^2 + \left(\frac{100 - \pi \cdot \left(\frac{100}{\pi}\right)}{2}\right)^2 = \frac{10000}{\pi} \simeq 3184,7 \quad \text{- seul un cercle.}$$

Alors, la fonction A(y) admet un maximum en $y=\frac{100}{\pi}$ d'où x=0

10. L'aire maximal est donc pour un cercle seul et est égale à $\simeq 3184,7\,m^2$.

42



- 1. Soient r le radius, h la hauteur de la boîte
- 2. La surface à optimiser : $\pi r^2 \cdot 2 + h \cdot 2\pi r$
- 3. On sait que le volume de la boîte est égale à 1l =1dm³,

alors
$$1 = \pi r^2 \cdot h \Leftrightarrow h = \frac{1}{\pi r^2}$$

4.
$$S(r) = \pi r^2 \cdot 2 + \frac{1}{\pi r^2} \cdot 2\pi r = 2\pi r^2 + \frac{2}{r}$$

5.
$$S'(r) = 4\pi r + 2 \cdot \left(-\frac{1}{r^2}\right) = 4\pi r - \frac{2}{r^2}$$

6.
$$S'(r) = \frac{4\pi r^3 - 2}{r^2} = \frac{2(2\pi r^3 - 1)}{r^2}$$

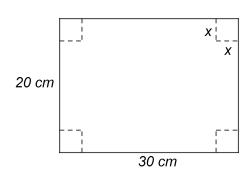
7.
$$S'(r)=0 \Leftrightarrow \frac{2(2\pi r^3-1)}{r^2}=0 \Leftrightarrow \{2\pi r^3-1=0 \text{ et } r\neq 0\} \Leftrightarrow 2\pi r^3-1=0 \Leftrightarrow r=\sqrt[3]{\frac{1}{2\pi}}$$
 D'où $Z_{S'(r)}=\{\sqrt[3]{\frac{1}{2\pi}}\}$

8. Tableau de signes (pour r>0):

r		$\sqrt[3]{\frac{1}{2\pi}}$	
$2\pi r^{3}-1$	_	0	+
r^2	+	+	+
f'(x)	_	0	+
f(x)		min	*

- 9. La fonction S(r) admet un minimum en $r = \sqrt[3]{\frac{1}{2\pi}} \approx 0,54$ d'où $h = \frac{1}{\pi r^2} \approx 1,08$.
- 10. La surface est minimale si le radius est égal à $\approx 0.54 \, dm$ et la hauteur est égale à $\approx 1.08 \, dm$.

43



- 1. Soit x la hauteur de la boîte
- 3. Les deux autres côtés sont (20-2x) et (30-2x)
- 2. Le volume à optimiser : V = x(20-2x)(30-2x)
- 4. $V(x)=(30-2x)(20-2x)x=4x^3-100x^2+600x$
- 5. $V'(x) = 600 200 x + 12 x^2 = 4(3 x^2 50 x + 150)$

6.
$$\Delta = (-50)^2 - 4 \cdot 3 \cdot 150 = 2500 - 1800 = 700$$
 et $x_{1,2} = \frac{50 \pm \sqrt{700}}{2 \cdot 3} = \frac{50 \pm 10\sqrt{7}}{2 \cdot 3} = \frac{25 \pm 5\sqrt{7}}{3}$ d'où $V'(x) = 4(3x^2 - 50x + 150) = 12(x - \frac{25 - 5\sqrt{7}}{3})(x - \frac{25 + 5\sqrt{7}}{3})$

7.
$$Z_{V'(x)} = \{\frac{25 - 5\sqrt{7}}{3}; \frac{25 + 5\sqrt{7}}{3}\}$$

8. Tableau de signes :

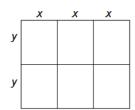
x		$\frac{25-5\sqrt{7}}{3}$		$\frac{5+\sqrt{7}}{3}$	
$\overline{f'(x)}$	+	0	_	0	+
f(x)	*	max		min	*

Remarque: $D_{vip} = \stackrel{|}{0};10[$

9. La fonction V(x) atteint un maximum en $x = \frac{25 - 5\sqrt{7}}{3} \approx 3.9$

10. Le volume de la boîte est maximal si la hauteur est égale à $\approx 3.9 \, cm$.

44



1. Soient x - la largeur et y - la longueur d'un enclos

2. La surface à optimiser : $3x \cdot 2y$

3. On a
$$9x + 8y = 288 \Leftrightarrow y = \frac{288 - 9x}{8}$$

4. La surface en fonction de x seul :

$$S(x) = 3x \cdot 2 \cdot \frac{288 - 9x}{8} = \frac{3x(288 - 9x)}{4} = \frac{3x \cdot 4 \cdot 72}{4} - \frac{3 \cdot 9x^{2}}{4} = 3x \cdot 72 - \frac{27x^{2}}{4} = 216x - \frac{27x^{2}}{4}$$

5.
$$S'(x) = 216 - \frac{2 \cdot 27 x}{4} = 216 - \frac{27 x}{2}$$

7.
$$S'(x)=0 \Leftrightarrow 216-\frac{27}{2}x=0 \Leftrightarrow \frac{27}{2}x=216 \Leftrightarrow x=\frac{432}{27}=16$$
 . Alors $Z_{S'(x)}=\{16\}$

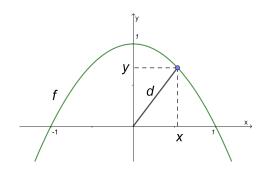
8. Tableau de signes :

_ x		16	
f'(x)	+	0	_
f(x)	*	max	

9. La fonction S(x) admet un maximum en x=16 , d'où $y=\frac{288-9\cdot 16}{8}=\frac{188}{8}=18$

10. La surface est maximale si les dimensions des enclos sont 16 m et 18 m.

45



- 1. Soient x et y les coordonnes le point de la courbe
- 2. La distance à optimiser : $\sqrt{x^2 + y^2}$ (>0)
- 3. On a $y=1-x^2$
- 4. D'où la distance en fonction de x seul : $d(x) = \sqrt{x^2 + (1-x)^2}$

5.

$$d'(x) = \left[\left[x^2 + (1 - x^2)^2 \right]^{\frac{1}{2}} \right]' = \frac{1}{2} \left[x^2 + (1 - x^2)^2 \right]^{-\frac{1}{2}} \cdot (x^2 + (1 - x^2)^2)' = \frac{1}{2} \cdot \frac{1}{\sqrt{x^2 + (1 - x^2)^2}} \cdot (2x + 2(1 - x^2) \cdot (1 - x^2)')$$

$$= \frac{2x + 2(1 - x^2) \cdot (-2x)}{2\sqrt{x^2 + (1 - x^2)^2}} = \frac{2x - 4x(1 - x^2)}{2\sqrt{x^2 + (1 - x^2)^2}} = \frac{4x^3 - 2x}{2\sqrt{x^2 + (1 - x^2)^2}} = \frac{2x(2x^2 - 1)}{2\sqrt{x^2 + (1 - x^2)^2}} = \frac{x(2x^2 - 1)}{\sqrt{x^2 + (1 - x^2)^2}}$$

7.
$$d'(x)=0 \Leftrightarrow \{x(2x^2-1)=0 \text{ et } \sqrt{x^2+(1-x^2)^2}\neq 0\} \Leftrightarrow x=0 \text{ ou } 2x^2-1=0$$

$$(\text{car } \sqrt{x^2+(1-x^2)^2}\neq 0 \ \forall x \text{). D'où } Z_{d'(x)}=\{-\frac{\sqrt{2}}{2};0;\frac{\sqrt{2}}{2}\}$$

8. Tableau de signes :

x		$-\frac{\sqrt{2}}{2}$		0		$\frac{\sqrt{2}}{2}$		
X	_	_	_	0	+	+	+	
$2x^2-1$	+	0	_	_	_	0	+	
$\sqrt{x^2+(1-x)^2}$	+	+	+	+	+	+	+	
f'(x)	_	0	+	0	_	0	+	
f(x)		min	X	max		min	X	

- 9. La fonction d(x) atteint un minimum en $x = \pm \frac{\sqrt{2}}{2}$, d'où $y = 1 x^2 = 1 (\pm \frac{\sqrt{2}}{2})^2 = 1 \frac{2}{4} = \frac{1}{2}$
- 10. Les points de la courbe de $y=1-x^2$ les plus proches à l'origine sont $\left(-\frac{\sqrt{2}}{2};\frac{1}{2}\right)$ et $\left(\frac{\sqrt{2}}{2};\frac{1}{2}\right)$.

Corrigés des exercices du chapitre 3

46

1. Soient x>0 et y>0 - les coordonnes le point de la courbe

2. L'aire à optimiser : $2x \cdot y$

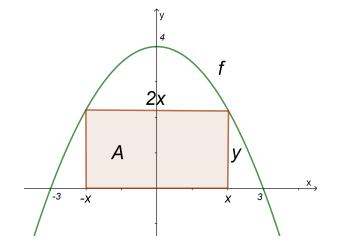
3. Équation de la courbe :

$$f(x)=a(x+3)(x-3)=a(x^2-9)$$

$$f(0)=4 \Leftrightarrow a(0^2-9)=4$$
$$\Leftrightarrow a(-9)=4$$
$$\Leftrightarrow a=-\frac{4}{9}$$

$$f(x) = -\frac{4}{9}(x^2 - 9)$$

Donc
$$y=f(x)=-\frac{4}{9}(x^2-9)$$



4. D'où l'aire en fonction de x seul : $A(x) = 2x \cdot (-\frac{4}{9}) \cdot (x^2 - 9) = -\frac{8}{9}x(x^2 - 9) = -\frac{8}{9}x^3 + 8x$

5.
$$A'(x) = -\frac{8 \cdot 3}{9} x^2 + 8 = -\frac{8}{3} x^2 + 8$$

6.
$$A'(x) = -\frac{8}{3}x^2 + 8 = -\frac{8}{3}(x^2 - 3) = -\frac{8}{3}(x + \sqrt{3})(x - \sqrt{3})$$

7.
$$Z_{A'(x)} = \{-\sqrt{3}; \sqrt{3}\}$$

8. Tableau de signes :

x		$-\sqrt{3}$		$\sqrt{3}$	
$-\frac{8}{3}$	_	_	_	_	_
3					
$x^{2}-3$	+	0	_	0	+
f'(x)	_	0	+	0	_
f(x)		min	*	max	

Rappel: $x \ge 0$

9. La fonction A(x) atteint un maximum pour $x=\sqrt{3}$ d'où $y=-\frac{4}{9}((\sqrt{3})^2-9)=-\frac{4}{9}\cdot(-6)=\frac{8}{3}$

10. Les dimensions le rectangle sont $2x \times y$ ou $2\sqrt{3} \times \frac{8}{3}$.

47

On considère $f(x)=x^3-3x=x(x^2-1)$

On a c = f(0.987654321) et d = f(0.987654320)

On étudie f'(x):

$$f'(x)=3x^2-3=3(x^2-1)=3(x+1)(x-1)$$

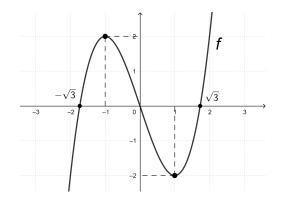


Tableau de signes :

\boldsymbol{x}		-1		1	
$3(x^2-1)$	+	0	_	0	+
f'(x)	+	0	_	0	+
f(x)	*	max		min	\nearrow

Notons que $0 < \underbrace{0.987654320}_{f^{-1}(d)} < \underbrace{0.987654321}_{f^{-1}(c)} < 1$

$$f^{-1}(d)$$
 $f^{-1}(c)$

Comme f(x) sur [0;1] , on a f(0,987654320) > f(0,987654321)

 $\quad \text{donc} \quad f\!\left(f^{-1}\!\left(d\right)\right)\!\!>\!\!f\!\left(f^{-1}\!\left(c\right)\right) \ \text{, alors} \ d\!>\!\!c$