Ma3NA – Ch3 – Activité 23b: Corrigé Etudier la fonction f définie par $f(x)=x^4+x^3+\frac{1}{8}$.

On a:
$$f(x) = x^4 + x^3 + \frac{1}{8} = \frac{8x^4 + 8x^3 + 1}{8}$$

1. pas de division ni de racine carrée (ni de log ...) : $D_f = \mathbb{R}$

2.
$$f(0)=\frac{1}{8}=0.125$$
 et $f(-1)\neq 0$ et $f(1)\neq 0$ \rightarrow pas de zéro entier

$$f(\frac{-1}{8})\neq 0 \ \operatorname{et} f(\frac{1}{8})\neq 0 \ o \ \operatorname{pas} \ \operatorname{de} \ \operatorname{z\'ero} \ \operatorname{rationnel}$$

on peut conjecturer qu'il n'y a pas de zéro ... on verra plus tard en fonction des autres calculs

3. Asymptotes verticales et horizontales: : f est polynomiale, donc ne peut pas avoir d'as. vert. ou horiz/obl

4. et 5. .
$$f'(x) = (x^4 + x^3 + \frac{1}{8})' = 4x^3 + 3x^2 = x^2(4x + 3)$$

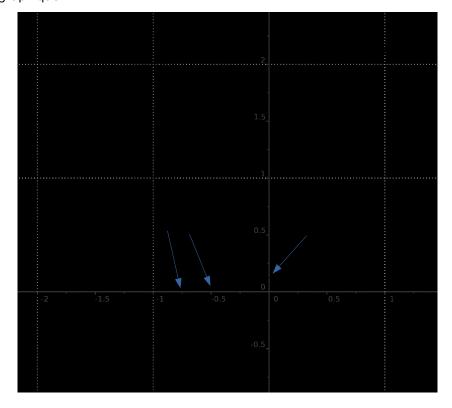
6. Zéros de
$$f'$$
: $f'(x) = 0 \Leftrightarrow x^2(4x+3) = 0 \Leftrightarrow x^2 = 0$ ou $x = -\frac{3}{4}$ $Z_{f'} = \{-\frac{3}{4}; 0\}$

7. Tableau de signes de la dérivée :

x		$-\frac{3}{4}$		0	
χ^2	+	+	+	0	+
4 <i>x</i> + 3	-	+	+	+	+
f'(x)	-	0	+	0	+
f(x)		min		Pas extr	

8. min :
$$f(-\frac{3}{4}) = (-\frac{3}{4})^4 + (-\frac{3}{4})^3 + \frac{1}{8} = \frac{5}{256} \approx 0,02$$
, donc ($(-0,75;-0,02)$ est un minimum

autre point d'intérêt: $f(0) = \frac{1}{8} = 0,125$, donc (0;0,125) est un pt critique


9. Deuxième dérivée : $f''(x) = (4x^3 + 3x^2)' = 12x^2 + 6x = 6x(2x + 1)$

x		$-\frac{1}{2}$		0	
6 <i>x</i>	-	-	-	0	+
2x + 1	-	0	+	+	+
f''(x)	+	0	-	0	+
f(x)	convexe	Pt infl	concave	Pt infl	convexe

Pt infl :: $f(-\frac{1}{2}) = (-\frac{1}{2})^4 + (-\frac{1}{2})^3 + \frac{1}{8} = \frac{1}{16} = 0,0625$, donc ((-0.5;0.0625) est un pt d'inflexion

Pt infl $::f(0)\!=\!\frac{1}{8}\!=\!0,\!125$, donc ($(0;0,\!125)$ $\,$ est un pt d'inflexion

10. Représentation graphique :

