Corollaire du théorème des accroissements finis

Si $f:[a;b] \to \mathbb{R}$ est telle que f est continue sur [a;b] et dérivable sur]a;b[Alors:

si f'(x) > 0, $\forall x \in]a; b[$, alors f est croissante sur [a; b]

si $f'(x) < 0, \forall x \in]a; b[$, alors f est décroissante sur [a; b]

si $f'(x)=0, \forall x \in]a; b[$, alors f est constante sur [a;b]

Démonstration pour le cas où f'(x) < 0 sur]a;b[

Soit $x \in [a;b]$ et $y \in [a;b]$, avec x < y. On a:

f est dérivable sur]x;y[, car [ARG 1: f est continue sur [a;b] par hyp et $]x;y[\subset [a;b]]$ f est continue sur [x;y], car [ARG 2: f est dérivable sur]a;b[par hyp et $]x;y[\subset [a;b]]$ Donc on peut appliquer le théorème des accroissements finis à f sur l'intervalle [x;y],

car [ARG 3: les hyp sont vérifiées]

On a alors:

il existe un $c \in]x; y[$ tel que $f'(c) = \frac{f(y) - f(x)}{y - x}$

car [ARG 4: conclusion thm AF]

Or, on sait que y - x > 0, car [ARG 5: choix au début (cf déf de la (dé)croissance)]

et que f'(c) < 0, car [ARG 6: cas où f'(x) < 0 sur] a; b[par hypothèse]

donc f(y)-f(x)<0, car [ARG 7: règle des signes]

c'est-à-dire f(y) < f(x), pour tout choix de x et y avec x < y.

C'est ce qu'il fallait démontrer, car [ARG 8: addition de f(x) des 2 côtés de l'équation]