imd

Théorème

Soit *d* une droite du plan. Alors on a :

$$\vec{v} igg(\begin{matrix} a \\ b \end{matrix} igg)$$
 est un vecteur directeur de $d \Leftrightarrow \vec{n} igg(\begin{matrix} -b \\ a \end{matrix} igg)$ est un vecteur normal à d

Démonstration

I) Hypothèse : $\vec{v} \begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur directeur de d

Conclusion : $\vec{n} \binom{-b}{a}$ est un vecteur normal à d

Démonstration:

Alors on a:

$$\vec{v} \cdot \vec{n} = \begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} -b \\ a \end{pmatrix}$$
, car [ARG 2:....]

$$=a(-b)+ba$$
, car [ARG 3:....]

donc
$$\vec{v} \perp \vec{n}$$
, car [ARG 4:....]

donc :
$$\vec{n} \binom{-b}{a}$$
 est un vecteur normal à d , car [ARG 5 :....]

II) Hypothèse :
$$\vec{n} \binom{-b}{a}$$
 est un vecteur normal à d

Conclusion :
$$\vec{v} \begin{pmatrix} a \\ b \end{pmatrix}$$
 est un vecteur directeur de d

Démonstration:

$$\vec{n} \binom{-b}{a}$$
 est un vecteur normal à d , car [ARG 6 :]

Alors on a:

$$\vec{v} \cdot \vec{n} = \begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} -b \\ a \end{pmatrix}, \text{ car [ARG 7 : ...}$$

$$=a(-b)+ba$$
, car [ARG 8:.....]

donc
$$\vec{v} \perp \vec{n}$$
, car [ARG 9:....]

Remarque : on peut bien sûr rédiger cette démonstration de façon bien plus légère ...