On ne demande pas d'autres justifications que les calculs détaillés.

Exercice 1 (environ 14 points)

On considère:

- la droite d_1 passant par le point A(-5;1) et de vecteur normal $\vec{n} \begin{pmatrix} 4 \\ -3 \end{pmatrix}$
- la droite d_2 d'équation 2x-3y=-1
- la droite d_3 parallèle à d_2 et passant par le point B(-2;3)
- (a) Déterminer une équation cartésienne de la droite d_1
- (b) Déterminer une équation cartésienne de la droite d_3
- (c) Déterminer l'angle entre d_1 et d_2
- (d) Calculer la distance entre d_2 et B(-2;3) (réponse exacte et arrondie au centième).

Exercice 2 (environ 27 points)

On considère:

- le plan Π_1 passant par le point et A(-1;-2;0) de vecteur normal $\vec{n} \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix}$
- le plan Π_2 d'équation -2x+y-z=3
- les points B(1;2;0) et C(-2;1;3)
- les vecteurs $\vec{u} \begin{pmatrix} 10 \\ -1 \\ 4 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- la droite d perpendiculaire à Π_2 et passant par le point B(1;2;0)
- (a) Déterminer un vecteur \vec{w} unitaire colinéaire à \vec{BC} . Donner toutes les solutions.
- (b) Le point A(-1;-2;0) appartient-il à Π_2 ?
- (c) Les vecteurs \vec{u} , \vec{v} sont-ils orthogonaux?
- (d) Les vecteurs \vec{u} , \vec{v} et \overline{BC} sont-ils coplanaires?
- (e) Déterminer une équation cartésienne de Π_1
- (f) Montrer sans résoudre de système d'équation que l'intersection de Π_1 et Π_2 est vide. Qu'en déduire sur le positionnement de Π_1 et Π_2 ?
- (g) Calculer la distance entre de Π_1 et Π_2 .
- (h) Déterminer les équations cartésiennes de d.
- (i) Déterminer un 2^e point de d.