Ma4n Chapitre 4 - Exercices supplémentaires

1 Soient les matrices
$$A = \begin{pmatrix} -1 & 2 & -9 \ 3 & -1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \ -1 & 5 \end{pmatrix}$, $C = \begin{pmatrix} -1 & 0 \ 3 & -2 \ -1 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 3 & 1 \ 0 & 2 \end{pmatrix}$

Effectuer, lorsque cela est possible, les opérations suivantes :

 $\mathbf{a}. BA$

c. AC

e. CA

g. CD

i. *BD*

b. *AB*

d. AC

f. AB

h. *DC*

j. *DB*

2 Résoudre les systèmes suivants avec le calcul matriciel :

a.
$$\begin{cases} 3x + 2y = -1 \\ -x - 2y = 4 \end{cases}$$

b.
$$\begin{cases} 3x + 4y = 1 \\ 2x + 4y = 3 \end{cases}$$

c.
$$\begin{cases} 2x + 2y = 1 \\ 3x + y = 3 \end{cases}$$

d.
$$\begin{cases} -1x + 4y = 1 \\ 3x + 3y = 1 \end{cases}$$

a.
$$\begin{cases} 3x + 2y = -1 \\ -x - 2y = 4 \end{cases}$$
 b.
$$\begin{cases} 3x + 4y = 1 \\ 2x + 4y = 3 \end{cases}$$
 c.
$$\begin{cases} 2x + 2y = 1 \\ 3x + y = 3 \end{cases}$$
 d.
$$\begin{cases} -1x + 4y = 1 \\ 3x + 3y = 1 \end{cases}$$

$$\begin{cases} -3x + 4y = 1 \\ -2x + 4y = -3 \end{cases}$$

3 Les applications suivantes sont-elles linéaires ? Justifier.

$$\mathbf{a.} \ A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \ x \\ x+3 \ y \end{pmatrix}$$

$$c. C \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ 2x \end{pmatrix}$$

a.
$$A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 & x \\ x+3 & y \end{pmatrix}$$
 c. $C \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x-y \\ 2 & x \end{pmatrix}$ **e.** $G \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ 3 & y-x \end{pmatrix}$

b.
$$B\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+2 & y \\ -y \end{pmatrix}$$

b.
$$B \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+2 & y \\ -y \end{pmatrix}$$
 d. $D \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+3 & y \\ 0 \end{pmatrix}$

4 Déterminer les matrices des applications linéaires suivantes :

$$\mathbf{a.} \ A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \ x \\ x+3 \ y \end{pmatrix}$$

$$C \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ 2x \end{pmatrix}$$

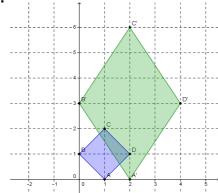
$$e. G\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} -x \\ 3 \ y - x \end{pmatrix}$$

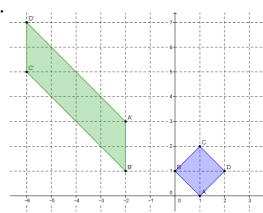
b.
$$B \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+2 \ y \\ -y \end{pmatrix}$$

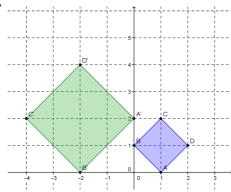
$$\mathbf{d.} \ D\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+3 \ y \\ 0 \end{pmatrix}$$

5 Dans chaque cas, déterminer, si c'est possible, une application linéaire qui transforme le carré ABCD en quadrilatère A'B'C'D':

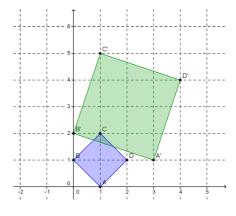
a.



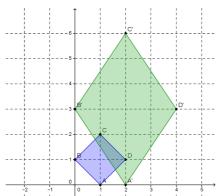




d.



e.



6 Soit L et K deux applications linéaires de \mathbb{R}^2 dans \mathbb{R}^2 définies par $L \binom{x}{y} = \binom{2 \ x - y}{3 \ x + 7 \ y}$

et
$$K \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & x + y \\ x - 2 & y \end{pmatrix}$$
.

Déterminer $L\circ K$:

- a. sans utiliser les matrices associées ;
- **b.** en utilisant les matrices associées.
- Soient $R_{\frac{\pi}{2}}$ une rotation de $\frac{\pi}{2}$ centrée en l'origine, R_{π} une rotation de π centrée en l'origine, S_x une symétrie d'axe O_x et S_y une symétrie d'axe O_y .

Déterminer les matrices associées aux applications suivantes et interpréter les résultats obtenus :

a.
$$R_{\frac{\pi}{2}} \circ R_{\pi}$$

c.
$$S_y \circ R_\pi$$

b.
$$S_x \circ S_y$$

d.
$$R_{\frac{\pi}{2}} \circ S_x$$

Ecrire les matrices associées aux applications linéaires suivantes puis donner, si elles existent, les matrices inverses et en déduire l'expression algébrique des applications qui sont associées à ces inverses :

$$\mathbf{a.} \quad A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \ x - y \\ -2 \ x + 5 \ y \end{pmatrix}$$

d.
$$D\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & x+6 & y \\ 9 & y+6 & x \end{pmatrix}$$

b.
$$B \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ 3 y \end{pmatrix}$$

$$\mathbf{e.} \quad D\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & x + 6 & y \\ 9 & y + 6 & x \end{pmatrix}$$

$$\mathbf{c.} \quad A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ -x + 2 \end{pmatrix}$$