Théorème « Critère de divergence »

Soit $\sum_{k=0}^{\infty} u_k$ une série.

Si $\lim_{k \to \infty} |u_k| \neq 0$, alors la série $\sum_{k=0}^{\infty} u_k$ est divergente.

Contraposée : Si la série $\sum_{k=0}^{\infty} u_k$ est convergente, alors $\lim_{k \to \infty} |u_k| = 0$.

Démonstration de la contraposée

Supposons que $\sum_{k=0}^{\infty} u_k = L$.

On pose $s_n = u_0 + u_1 + ... + u_n = \sum_{k=0}^n u_k$ la suite des sommes partielles.

On a:
$$\lim_{k \to +\infty} s_k = L$$
, car [ARG 1:....]

mais aussi :
$$\lim_{k \to +\infty} s_{k-1} = L$$
, car [ARG 2 :]

donc
$$\lim_{k \to +\infty} s_k - \lim_{k \to +\infty} s_{k-1} = 0$$
, car [ARG 3:....]

$$\Leftrightarrow \lim_{k \to +\infty} (s_k - s_{k-1}) = 0$$
, car [ARG 4:....]

$$\Leftrightarrow \lim_{k \to +\infty} u_k = 0$$
, car [ARG 5:....]

Nous avons $\lim_{k\to +\infty} u_k = 0$; il reste à parler de $\lim_{k\to +\infty} |u_k| = 0$:

on a:
$$\forall \varepsilon > 0$$
, $\exists N \ge 1$ tel que $\forall k \ge N$, on a: $|u_k - 0| < \varepsilon$,

c'est-à-dire $\forall \varepsilon > 0$, $\exists N \ge 1$ tel que $\forall k \ge N$, on a : $|u_k| < \varepsilon$

qu'on peut aussi écrire : $\forall \varepsilon > 0$, $\exists N \ge 1$ tel que $\forall k \ge N$, on a : $|u_k| < \varepsilon$

et donc en déduire que $\lim_{k\to+\infty} |u_k| = 0$, car [ARG 7 :]